venerdì

Chernobyl aprile 1986 (seconda parte)






Il portale "Il Meteo" riporta le condizioni meteorologiche sull'Europa da martedì 29 aprile a venerdì 2 maggio 1986, dicendo che "furono un fattore chiave nel periodo successivo all'accaduto e nel coinvolgimento diretto che subì l'Italia.
La situazione meteorologica nelle ore successive al disastro di sabato 26 aprile 1986, era di due zone ad alta pressione, una a cuneo sull'Europa Centrale e una sul Mediterraneo e quindi
in un primo tempo, sabato 26 e domenica 27, il vento ha soffiato verso Nord investendo la Bielorussia e gli Stati Baltici.
poi, il lunedì 28 aprile, ha soffiato in uno stretto corridoio verso Nord Ovest, investendo dapprima la Svezia e la Finlandia e poi ha investito verso Ovest, la Polonia, la Danimarca, i Paesi Bassi, il Mare del Nord, Regno Unito e Scozia.
In un secondo tempo, da martedì 29 aprile a venerdì 2 maggio, l'area depressionaria del Mediterraneo, si è spostata a Sud e ha richiamato un flusso d'aria da Nord Est che ha investito la Cecoslovacchia, l'Ungheria, la Slovenia, la Croazia, l'Austria e l'Italia settentrionale e poi in parte ha scivolato sull'arco alpino, investendo la Svizzera, la Francia di Sud Est e la Germania e in parte ha seguito l'arco appenninico investendo l'Italia centrale.
In seguito da domenica 4 maggio a martedì 6 maggio, il vento girava di nuovo e spirava verso Sud, investendo l'Ucraina, la Russia meridionale, la Romania e la Moldavia, la Penisola Balcanica, fino alla Grecia e alla Turchia.
L'emissione di vapore radioattivo cessò sabato 10 maggio 1986.
Al fine di valutare l'inquinamento radioattivo nelle varie zone è importante sapere dove è piovuto, perché solo dove è piovuto gli elementi radioattivi hanno raggiunto e contaminato il suolo. Il portale Humus riporta mappe tematiche, europee ed italiane, sulla contaminazione proveniente da Chernobyl.
È possibile riscontrare questo inquinamento ancor oggi, andando a misurare la radioattività emessa dal cesio (137Cs), dal plutonio (239, 240Pu) e dal piombo (210Pbxs) negli strati di terreno risalenti al 1986.

Gestione della crisi
Livello delle radiazioni

Immediatamente furono mandati operatori della centrale per effettuare rilevamenti, attrezzati di soli contatori Geiger e mascherine di tipo chirurgico. Un operatore incaricato tornò con dei dati sconcertanti. Le radiazioni nei pressi del reattore misuravano ben 20.000 Röntgen/ora. Considerato che in una città europea la pietra misura circa 20 micro-Röntgen, ovvero 0,00002 Röntgen, il valore rilevato nei pressi della centrale era 1 miliardo di volte superiore a quello naturale. Sono sufficienti 500 Röntgen distribuiti in un lasso di 5 ore per uccidere un essere umano. Molti operatori furono esposti ad una dose mortale di radiazioni nell'arco di pochi minuti. Solo una piccola parte degli strumenti di rilevazione a disposizione erano in grado di effettuare misure fino a 360.000 Röntgen/ora (R/h); molti di quelli impiegati arrivavano ad un massimo di 3,6 R/h. In alcune zone, visto che la propagazione delle radiazioni è a macchia di leopardo, i valori stimati superavano di oltre 5.000 volte il valore riportato dagli strumenti meno efficienti. A causa dei valori fuori scala riportati, il capo ingegnere Aleksandr Akimov suppose quindi che il reattore fosse ancora intatto. Nonostante questo rimase, senza alcun indumento protettivo, nel reattore n° 4 della centrale assieme alla sua squadra. Morì assieme ad altri suoi colleghi a distanza di pochi giorni, nel maggio del 1986, per la prolungata esposizione alle radiazioni.
Le misure di sicurezza adottate immediatamente dopo il verificarsi dell'esplosione coinvolsero migliaia di vigili del fuoco e militari accorsi immediatamente sul luogo del disastro. Benché la situazione apparisse nell'immediato critica, la città di Pripjat' non venne evacuata immediatamente. Il mattino del 26 aprile 1986 è stato documentato da Vladimir Ševčenko che, non consapevole dei rischi a cui era sottoposto, si avventurò nella zona fortemente contaminata senza alcuna precauzione, arrivando addirittura a filmare a pochi metri sopra il reattore in fiamme, e a causa delle radiazioni si ammalò e morì anche lui dopo lunga malattia. Nel suo filmato sono visibili le migliaia di mezzi dell'esercito accorsi sul luogo. Peraltro quel 26 aprile gli operai impegnati nella costruzione dei reattori 5 e 6 andarono regolarmente al lavoro; nessuno li aveva avvertiti.

L'incendio

La squadra capitanata dal tenente Vladimir Pravik arrivò sul luogo del disastro per prima con il comando di spegnere un incendio causato da un corto circuito. Non erano stati informati della tossicità dei fumi e del materiale caduto dopo l'esplosione nell'area circostante la centrale. Alle 5:00 del mattino alcuni incendi sul tetto e attorno all'area erano stati estinti. Pravik morì il 9 maggio 1986, 13 giorni dopo l'esplosione e così morirono altri vigili del fuoco in azione la mattina del 26 aprile 1986.
Il reattore continuò a bruciare per giorni e venne spento con l'ausilio di elicotteri che sganciarono tonnellate di boro, silicati, sabbia e dolomia, materiali adeguati per trattare un incendio di tale natura poiché particolarmente efficaci nella schermatura delle radiazioni e soprattutto secchi, così da non produrre colonne di vapori radioattivi. Si ricordano le vittime dell'elicottero precipitato durante una manovra di sgancio materiali il cui equipaggio era composto da quattro giovani piloti: Volodymyr Kostjantynovyč Vorobjov, Oleksandr Jevhenovič Junhkind, Leonid Ivanonovyč Chrystyč e Mykola Oleksandrovič Hanžuk.
Nei giorni a seguire si deciderà più o meno maldestramente di continuare a raffreddare il reattore ormai esploso, ovvero scoperchiato a cielo aperto, inondandolo d'acqua il che genererà ulteriore vapore radioattivo in dispersione nell'atmosfera.

Dichiarazioni

Il governo sovietico inizialmente cercò di tenere nascosta la notizia di un grave incidente nucleare. Impiegarono diversi giorni per rendersi conto della gravità del fatto ma nonostante la situazione risultasse subito disperata un velo di omertà si stese sull'URSS.
La mattina del 27 aprile, nella relativamente vicina Svezia, alcuni lavoratori in ingresso alla centrale di Forsmark fecero scattare l'allarme ai rilevatori di radioattività. Si suppose, visto l'elevato livello dei dati, che vi fosse una falla all'interno della centrale e i responsabili cominciarono immediatamente a fare controlli in tutti gli impianti. Assicuratisi che le loro centrali erano perfettamente in sicurezza, cominciarono a cercare altrove la fonte delle radiazioni e giunsero così fino in Unione Sovietica. Chiesero spiegazioni al governo e chiesero loro perché non era stato avvisato nessuno. Dapprima il governo sminuì la cosa ma ormai gli svedesi, con i loro controlli, avevano messo al corrente l'Europa intera che un grave incidente era occorso in una centrale sovietica. Il mondo intero cominciò a fare pressione e finalmente rilasciarono le prime e scarne dichiarazioni sull'incidente che fecero il giro del mondo.

Evacuazione

La commissione d'inchiesta capitanata da Valerij Legasov giunse a Pripjat' la sera del 26 aprile. Viste le condizioni di numerose persone già sotto terapia decisero la notte del 27 aprile l'evacuazione della città. Fu detto ai cittadini di portare con sé pochi effetti personali, che sarebbero stati trasferiti in misura precauzionale e che in breve tempo avrebbero potuto far ritorno alle loro abitazioni.
Le autorità sovietiche iniziarono ad evacuare la popolazione dell'area circostante Černobyl' 36 ore dopo l'incidente. Giunsero da Kiev decine di autobus che successivamente vennero abbandonati in una sorta di cimitero nella zona interdetta, dove ancora oggi si possono osservare migliaia di mezzi utilizzati per lo sgombero e la gestione della zona. Molti sono veicoli militari. L'evacuazione è stata documentata da Michail Nazarenko e si può notare la sottile calma che quel giorno imperversava in città. Nessuno era realmente conscio di ciò che stava accadendo. Decine di persone si soffermarono fino a tardi, la notte dell'esplosione, per ammirare la luce scintillante sopra il reattore. Nel maggio 1986, circa un mese dopo, tutti i residenti nel raggio di 30 km dall'impianto, circa 116.000 persone, erano stati trasferiti.

Rimozione dei detriti

Una volta spento l'incendio e tamponata la situazione di emergenza, negli anni successivi si procedette alle operazioni di recupero e di decontaminazione dell'edificio e del sito del reattore e delle strade intorno, così come alla costruzione del sarcofago. Incaricati di queste operazioni furono i cosiddetti liquidatori (recovery operation workers). In base a leggi promulgate in Bielorussia, Russia e Ucraina, 600.000 persone, fra militari e civili, ricevettero speciali certificati e la associata medaglia che confermavano il loro status di "liquidatori". Sebbene altre stime basate su registri nazionali parlino di 400.000 e altre ancora 800.000. In ogni caso, fra il totale dei liquidatori la popolazione costituita dai 226.000 ~ 240.000 che operarono nella zona in un raggio di 30 km e negli anni 1986 e 1987 è quella che ricevette la dose di radiazioni più elevata. Il resto lavorò in aree oltre i 30 km oppure negli anni fra il 1988 e il 1990, quando il livello di radiazioni si era già notevolmente abbassato. I primi liquidatori furono coloro che vennero incaricati di prelevare i blocchi di grafite dal tetto per gettarli a braccia dentro allo squarcio dove si trovava il reattore. Vennero informati a questo punto dei rischi e moltissimi non indugiarono un momento pur essendo consapevoli della pericolosità dell'operazione. Erano sottoposti a turni di 2 minuti l'uno, in seguito, fu stimato che questi turni non avrebbero dovuto superare i 40 secondi di esposizione, pena una fortissima dose efficace ricevuta. Dovevano uscire sul tetto, caricare a braccia un blocco di grafite di circa 50 chilogrammi di peso e buttarlo il più rapidamente possibile nello squarcio. Alcuni dovevano invece, con l'ausilio di un badile, spalare i detriti sempre all'interno del reattore. Erano protetti da indumenti che potevano garantire soltanto un minimo di protezione dalle radiazioni. Fu promesso loro che al termine di un monte di ore di servizio sul sito del disastro avrebbero avuto il diritto alla pensione anticipata di tipo militare. Tra i liquidatori c'erano numerosi civili provenienti da tutta l'ex Unione Sovietica.

Effetto dei detriti

Il 9 maggio 1986, le 5.000 tonnellate di boro, dolomia, argilla e carburo di boro scaricate nei primi giorni sul reattore per spegnere l'incendio della grafite, gravarono tanto sul reattore già distrutto che crollarono ulteriormente dentro la voragine. Da questo ulteriore crollo si sprigionò una ulteriore, più debole, colonna di fumi radioattivi che causò un rilascio di materiale di fissione che si sparse in un raggio di 35 chilometri, già evacuati, attorno alla centrale

Galleria

Secondo gli esperti vi erano buone possibilità che il nocciolo ancora incandescente e pieno di attività potesse sprofondare ulteriormente arrivando a contatto con l'acqua delle falde, causando così nuove esplosioni di vapore. Vennero chiamati dei minatori che lavorarono a braccia sotto il reattore scavando un tunnel per inserire sistemi di raffreddamento nei livelli inferiori della centrale. Spesso le mascherine protettive rendevano loro difficoltosa la respirazione, costringendoli a lavorare in condizioni al limite del sopportabile. La mappatura definitiva, condotta con l'ausilio di robot automatizzati, del combustibile disperso nei livelli inferiori della centrale attestò comunque che in nessun caso il nucleo liquefatto superò il solaio immediatamente sopra le fondazioni della centrale.

Il sarcofago

Tra i 600.000 liquidatori si trovano anche coloro che si adoperarono per la costruzione del sarcofago esterno. I primi due anni 1986-1987 furono 226.000 ~ 240.000 che si alternarono per la pulizia e la realizzazione dello scudo protettivo. Il reattore necessitava di essere isolato al più presto possibile assieme ai detriti dell'esplosione, che comprendevano 180 tonnellate di combustibile e pulviscolo altamente radioattivo e 740.000 metri cubi di macerie contaminate. Fu quindi progettata la realizzazione di un sarcofago di contenimento per far fronte all'emergenza. Viste le necessità, furono impiegati una fila di camion come fondazioni delle pareti di cemento, per un totale di 300.000 tonnellate, erette per il contenimento del reattore e la struttura portante del sarcofago sono le stesse macerie del reattore numero 4 e materiale metallico (1.000 tonnellate), il che rende il complesso sia instabile che poco sicuro. La volta è sostenuta da tre corpi principali che sorreggono la copertura superiore costituita da tubi di 1 metro di diametro e di pannelli di acciaio. La parete sud è realizzata prevalentemente da pannelli di acciaio che alzandosi per alcune decine di metri si inclinano di circa 115 gradi per poi concludere verticalmente formando il tetto. La parete est è la parete non collassata dello stesso reattore mentre la parete a nord è un puzzle di acciaio, cemento e mura semidistrutte. La parete ovest, quella più spesso impressa sulle foto, per la sua complessità è stata realizzata a parte e poi montata con l'ausilio di gru sulla facciata.
Detto sarcofago è stato creato a tempo record tra il maggio ed il novembre 1986, ma purtroppo ogni anno, proprio per la povertà dei materiali usati e per la mancanza di una più seria progettazione, nuove falle si aprono sulla struttura, per un totale di oltre 1.000 metri quadrati di superficie. Alcune fessure raggiungono dimensioni tali da potervi lasciar passare tranquillamente un'automobile, pari a circa 10/15 metri di diametro. La pioggia vi si infiltra all'interno e rischia di contaminare le falde seppur sotto il reattore sia stato costruito a braccia un tunnel per isolare il nocciolo fuso dal terreno. Circa 2.200 metri cubi di acqua si riversano all'interno del sarcofago ogni anno facendo aumentare di 10 volte il peso sulle fondazioni che va da un minimo di 20 fino ad un massimo di 200 tonnellate per metro quadrato. Il basamento è sprofondato di 4 metri permettendo l'infiltrarsi di materiale radioattivo nelle falde acquifere che sono correlate ai fiumi Pripjat' e Dnepr che a loro volta portano il loro carico fino al mar Nero. 30 milioni di persone lungo il corso dei fiumi si servono di essi. La temperatura all'interno del sarcofago raggiunge in alcuni punti, ancora oggi, 1.000 gradi centigradi in prossimità del nocciolo e tale temperatura contribuisce al costante indebolimento ed alla deformazione della struttura.
L'attuale sarcofago non è mai stato dichiarato come una struttura di contenimento permanente. Ad aggravare la situazione è la sismicità della zona del Pripjat'.

All'interno del sarcofago

All'interno del sarcofago si trovano quindi le macerie dell'intera struttura che conteneva il reattore. Si impiegò moltissimo per poter conoscere cosa si trovava sotto le macerie e i detriti scaricati. I tecnici in azione in quel periodo critico riferiscono che era terribile lavorare in quelle condizioni sempre con un contatore Geiger a portata di mano e che spesso rilevavano una radioattività tollerabile come 1 o 5 R/h ma spesso bastava voltare l'angolo per dover scappare davanti a 500 R/h. Dopo la costruzione dello scudo di acciaio e cemento, nelle pareti in muratura interne rimaste, sono stati effettuati dei buchi per ispezionare mediante l'uso di telecamere ed apparecchiature radiocomandate la condizione interna dell'edificio semidistrutto. Inizialmente i tecnici e gli operatori supposero di trovare il reattore sepolto là sotto tra le macerie ma con loro grande stupore, si resero conto che non era rimasto più niente e che esso si era fuso assieme al nocciolo, colando lungo i piani sottostanti. La lava radioattiva aveva formato una stalagmite dalla curiosa forma che assomiglia ad un "piede d'elefante" e proprio così è stata ribattezzata. È formata dal reattore e dal nocciolo fusi ed è composta da uranio, cesio, plutonio, grafite ed altro materiale. È altamente radioattiva, per questo il video del Piede d'elefante è stato realizzato tramite apparecchiatura radiocomandata

Nuovo Sarcofago

Nel 1997 al vertice del G7 a Denver, fu fondata la Chernobyl Shelter Fund per raccogliere fondi per mettere in sicurezza il reattore. Il nuovo progetto prevede la costruzione di un nuovo sarcofago di diversa concezione, realizzato con materiali più sicuri e montato su binari. La struttura a cupola successivamente dovrebbe essere spinta fino sopra il vecchio sarcofago così da evitare agli addetti ai lavori l'esposizione diretta alle radiazioni. Nel 1998 il costo stimato per la sua progettazione e realizzazione raggiungeva i 780 milioni di dollari. Ora è levitato oltre il miliardo di dollari. Metterebbe in sicurezza il sito per circa 100 anni. La Shelter Implementation Plan (SIP) è una cooperativa che si adopera per raccogliere i fondi per la realizzazione della nuova cupola, che la sola Ucraina non sarebbe in grado di supportare. La SIP è composta e supportata dall'Unione europea, dagli Stati Uniti e dalla stessa Ucraina. Le uniche modifiche apportate al sarcofago fino ai nostri giorni sono state la realizzazione di accessi per la manutenzione ed il monitoraggio del tetto ed un sistema per il controllo delle polveri.
Il progetto del nuovo sarcofago (NSC) prevede la realizzazione di una struttura a doppia volta (una sopra l'altra) di altezza massima pari a 92.5 metri e costituita da un totale di 85 elementi. Parte della struttura verrà costruita esternamente al sito e verrà assemblato il tutto a 180 metri di distanza dal reattore. Gli archi saranno composti da materiale tubulare d'acciaio resistente e relativamente leggero per diminuire il peso della struttura e i costi d'assemblaggio e successivamente verranno ricoperti con tre strati di pannelli poi ulteriormente rivestiti di Lexan, resina termoplastica di policarbonato in grado di prevenire l'accumularsi di particelle radioattive tra i vari corpi della volta. Tra l'arco superiore, di campata pari a 270 metri e quello inferiore, di campata pari a 240 metri, intercorre nel punto più alto uno spazio di 12 metri. Saranno realizzate 12 doppie volte di una lunghezza di 13,5 metri e una volta assemblate formeranno un unico corpo lungo oltre 150 metri. Dopodiché verranno costruite delle pareti laterali e non verranno più sfruttate le macerie ed il vecchio sarcofago come struttura portante. Si cercherà di rendere il tutto meno pesante possibile e gli scavi per la costruzione delle fondazioni saranno minimi per evitare di smuovere terreno in superficie ancora fortemente contaminato formato da terra, sabbia, detriti della costruzione del primo sarcofago e scorie radioattive. Verranno posati dei binari per spostare la struttura direttamente sopra il sarcofago così da evitare agli operai che realizzeranno la struttura l'esposizione alle radiazioni. Il progetto finito il 12 febbraio 2004 è stato approvato un mese dopo dal governo Ucraino, ma è ancora sottoposto a continue verifiche e non si sa precisamente quando e come verrà realizzato. Il 26 aprile 2007 venne dichiarato che il sito di costruzione è in fase di preparazione ma senza specificare altro. Il 17 settembre 2007 la BBC ha dichiarato che stanno susseguendosi i lavori. Sono previsti 5 anni per il completamento del NSC, ma la mancanza dei fondi necessari e i continui intoppi burocratici ed economici potranno far subire alterazioni alle stime di realizzazione. Negli ultimi anni si teme fortemente che il sarcofago del reattore n.4 possa cedere, anche per via delle radiazioni, che facilitano la decomposizione del sarcofago. Il vecchio sarcofago, progettato per durare fino al 2016, deve essere infatti ormai rimpiazzato al più presto perché si teme che una nuova nube composta da 5 Tonnellate di polveri radioattive (sulle 190 Tonnellate di materiale radioattivo contenuto nel reattore)si liberino nell' atmosfera europea.

Conseguenze del disastro
Rilascio di materiale radioattivo e contaminazione ambientale

L'UNSCEAR nel suo rapporto del 2000, sulla base di misure di radioattività e analisi di campioni, ha stimato che il rilascio totale di radioattività nell'atmosfera, escludendo l'attività dovuta ai gas nobili, è stato pari a 5.300 PBq. Il rapporto del Chernobyl forum, considerando la radioattività totale inclusi anche i gas nobili, arriva a una stima di 14 EBq, pari a 14.000 PBq. Di queste, 1800 PBq sono dovute allo iodio-131 dalla emivita di 8 giorni, 85 PBq al cesio-137 di 30 anni di emivita, 10 PBq dovuti allo stronzio-90 e 3 PBq a isotopi di plutonio, che sono plutonio 239 e plutonio 240.
I più alti valori di cesio-137 si trovano sugli strati superficiali del terreno, da dove vengono assorbiti da piante e funghi e quindi entrano nella catena alimentare locale. È risaputo che incendi possono liberare nuovamente le particelle radioattive. In particolare V.I. Yoschenko et al. documentarono il possibile incremento di mobilità del cesio, dello stronzio e del plutonio, a causa degli incendi delle foreste. In un esperimento, vennero accesi incendi e quindi misurati i livelli di radioattività nell'aria nelle zone poste sotto vento.
Sono avvenuti incendi nell'erba e nella foresta all'interno della zona contaminata, rilasciando pulviscolo radioattivo nell'atmosfera. Nel 1986 una serie di incendi distrusse 23,36 km2 di foresta, e da allora molti altri incendi sono scoppiati all'interno della zona dei 30 km. All'inizio del maggio del 1992 scoppiò un grave incendio ed interessò 5 km2 di terreno, compresi 2.7 km2 di foresta. Questo portò ad un forte incremento dei livelli di cesio nel pulviscolo atmosferico.
Mappa della contaminazione di cesio-137 in Bielorussia, Ucraina, Russia relativa all'anno 1986
La contaminazione provocata dall'incidente di Černobyl' non interessò solo le aree vicine alla centrale ma si diffuse irregolarmente secondo le condizioni atmosferiche interessando soprattutto aree di Bielorussia, Ucraina e Russia. Sempre lo stesso documento dell'UNSCEAR fa un rapporto delle aree contaminate e loro livello di contaminazione misurato sul cesio-137, riassunti nella seguente tabella e relativi alla mappa a fianco:
Livelli di contaminazione (anno 1986) di cesio-137 e aree interessate

Denominazione
Livello di contaminazione
Superficie
Popolazione residente

area di esclusione, zone chiuse o confiscate
> 1.480 kBq/m² ( > 40 curie/km²)
3100 km²
0 (evacuati tutti i 116.000)

area a stretto controllo, zone di controllo permanente
fra 555 e 1.480 kBq/m² (fra 15 e 40 cu/km²)
7.200 km²
270.000

zone di controllo periodico
fra 185 e 555 kBq/m² (fra 5 e 15 cu/km²)
19.100 km²
830.000

aree a bassa contaminazione
fra 37 e 185 kBq/m² (fra 1 e 5 cu/km²)
200.000 km²
5,6 milioni

Fra le aree a bassa contaminazione, ve ne sono anche alcune che interessano i paesi scandinavi (Svezia, Finlandia e Norvegia) e dell'Europa orientale (Bulgaria, Grecia, Moldvia, Slovenia, Austria, Svizzera e anche 300 km² in Italia).
È stato calcolato che l'incidente di Černobyl' abbia rilasciato una quantità di radiazioni pari a 400 volte a quelle rilasciate in occasione della bomba caduta su Hiroshima. Alcuni ritengono tuttavia che altre azioni quali gli esperimenti nucleari del XX secolo abbiano liberato quantità di radiazioni ancora maggiori.

fonte: Wikipedia

Nessun commento: